
Algorithm Design

Lec05
Dr. Mohammad Ahmad

Algorithm Design

 When searching for a solution, we may be
interested in two types:
– Either we are looking for the optimal solution,

or,
– We are interested in a solution which is good

enough, where good enough is defined by a
set of parameters

Algorithm Design

 For many of the strategies we will
examine, there will be certain
circumstances where the strategy can be
shown to result in an optimal solution

 In other cases, the strategy may not be

guaranteed to do so well

Algorithm Design

 Any problem may usually be solved in
multiple ways

 The simplest to implement and most

difficult to run is brute force
– We consider all possible solutions, and find

that solution which is optimal

5

Algorithm Design Techniques

Brute Force
Divide and Conquer
Greedy Algorithms
Dynamic Programming
Backtracking

6

Brute Force
Based on the problem’s statement and

definitions of the concepts involved.
Examples:
Sequential search
Simple sorts: selection sort, bubble sort
Computing n!

Brute Force

 Brute force techniques often take too
much time to run

 We may use brute-force techniques to

show that solutions found through other
algorithms are either optimal or close-to-
optimal

Brute Force
 With brute force, we consider all possible

solutions

 Most other techniques build solutions, thus,

we require the following definitions

 Definition:

– A partial solution is a solution to a problem which
could possibly be extended

– A feasible solution is a solution which satisfies
any given requirements

Algorithm Design

 Thus, we would say that a brute-force
search tests all feasible solutions

 Most techniques will build feasible

solutions from partial solutions and
thereby test only a subset of all possible
feasible solutions

Algorithm Design

 It may be possible in some cases to have
partial solutions which are acceptable (that
is, feasible) solutions to the problem

 In other cases, partial solutions may be

unacceptable, and therefore we must
continue until we reach a feasible solution

11

Divide and Conquer

Reduce the problem to smaller problems (by a
factor of at least 2) solved recursively and then
combine the solutions

Examples: Binary Search
 Mergesort

 Quick sort
In general, problems that can be defined recursively

12

Decrease and Conquer

Reduce the problem to smaller
problems solved recursively and then
combine the solutions

Examples of decrease-and-conquer algorithms:
 Insertion sort
 (recursion)
 Computing Fibonacci numbers (recursion)

13

Greedy Algorithms
"take what you can get now" strategy

Work in phases:
 In each phase the currently best
 decision is made.
A greedy algorithm always makes the
choice that looks best at the moment.

14

Greedy Solutions to Optimization
Problems

Surprisingly, many important and
practical optimization problems can
be solved this way.

Every two-year-old knows the greedy algorithm.

In order to get what you want,
just start grabbing what looks best.

Elements of Greedy Strategy

• An greedy algorithm makes a sequence of choices,
each of the choices that seems best at the
moment is chosen
– NOT always produce an optimal solution

• Two ingredients that are exhibited by most
problems that lend themselves to a greedy
strategy
– Greedy-choice property
– Optimal substructure

16

Greedy Algorithms - Examples

• Dijkstra's algorithm
 (shortest path is weighted graphs)
• Prim's algorithm, Kruskal's
 algorithm
(minimal spanning tree in weighted graphs)
• Coin exchange problem
• Huffman Trees

17

Dynamic Programming

Bottom-Up Technique in which the
smallest sub-instances are explicitly solved
first and the results of these used to
construct solutions to progressively larger
sub-instances.

Example:
Fibonacci numbers computed by iteration.

18

Backtracking

Generate-and-Test methods
Based on exhaustive search in
multiple choice problems

Typically used with depth-first state
space search problems.

Example: Puzzles

19

Backtracking –
State Space Search

• initial state

• goal state(s)

• a set of intermediate states

• a set of operators that transform one state into another.
Each operator has preconditions and postconditions.

• a cost function – evaluates the cost of the operations
(optional)

• a utility function – evaluates how close is a given state to
the goal state (optional)

20

Conclusion

How to choose the approach?
First, by understanding the problem, and second,
by knowing various problems and how they are
solved using different approaches.

	Algorithm Design
	Algorithm Design
	Algorithm Design
	Algorithm Design
	Algorithm Design Techniques
	Brute Force
	Brute Force
	Brute Force
	Algorithm Design
	Algorithm Design
	Divide and Conquer
	Decrease and Conquer
	Greedy Algorithms
	Greedy Solutions to Optimization Problems
	Elements of Greedy Strategy
	Greedy Algorithms - Examples
	Dynamic Programming
	Backtracking
	Backtracking – �State Space Search
	Conclusion

